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Abstract: Analysis of the conformations of some cycloheptenones and cycloheptadienolates, and 

the relationship between conformation and stereochemistry during certain reactions, is 

discussed. 

The cycloheptane ring presents some interesting possibilities in organic synthesis, but 

has the reputation of being very awkward in terms of stereocontrolled functionalization, 

largely owing to the difficulties associated with its conformational ana1ysis.l Introduction 

of unsaturation, as in cycloheptene or cycloheptenone, leads to some degree of conformational 

rigidity, and it may be anticipated that useful methodology can be developed provided the 

conformational factors which are at work during certain functional group manipulations are 

understood, 

In the preceding communication' we described the outcome of certain reactions of cyclohep- 

tenone derivatives, which showed good stereocontrol, and which led to the preparation of 

intermediates which are appropriate for synthetic approaches to the (+)-Prelog-Djerassi - 

Lactonic acid and, therefore, a number of important macrolide antibiotics. 

First, we shall consider the sodium borohydride reduction of the cycloheptenone 

derivatives (1) and (3) to give alcohols (2) and (4), respectively. Molecule (1) can 
unambiguously adopt a chair conformation in which all substituents are equatorial. 

Consequently, stereoelectronically controlled attack of the hydride reducing agent along the 

axial vector' leads to the equatorial alcohol shown in (2). With compound (3) the situation is 
rattler different, since two conformations , (3A) and (3B) are possible, each having one axial 

and one equatorial substituent. However, the 'H NMR spectrum of (3) clearly shows H(4) to be 

lx. ii, with J,,5 = 9.9 Ha. Thus. the oreferred conformation is (M), with OR group equatorial 
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and CR3 axial. Borohydride reduction of (3A)occurs cleanly, again by stereoelectronically 
controlled axial attack to give (4)( see preceding communication), exactly analogous to the 

reduction of (1). These results provide convincing evidence that (3) has the relative 

stereochemistry shown, and we are now in a position to analyze the methylation of substituted 

cycloheptenone derivatives. 

3A 

The enolate derived from cycloheptenone is essentially a cyclohepta-1,3-diene derivative, 

and its reactivity may be analyzed on the basis of the diene conformations. Spectroscopic 

evidence has been cited as indicative of planar4 or twisted5 diene conformations, (SA) or (SB), 

and (drawn as enolate for convenience), is therefore not useful as a guide to reactivity. 

Cyclofunctionalization results obtained in our own laboratory' are strongly suggestive of a 

twisted diene conformation at relatively low temperatures, and the present enolate alkylation 

results are best interpreted in terms of that conformation. This is also consistent with 

simple molecular models which indicate appreciable angle strain in the planar fully conjugated 

diene, which is relieved on allowing twisting, and whichinturnis accompanied by partial 

deconjugation (interplanar angle is ca 45'). Thus, assuming the dienolates (6) and (7) adopt - 
the twisted conformation (58) we can explain the stereochemistry of methylation. 

k 
5A - 

As can be seen by inspection of (5B), the a-face of the twisted diene is concave. 

Approach of the electrophile (CH31) is clearly preferred at the convex R-face. With enolate 

(6)the methoxymethylether substituent has quasiequatorialorientation (R1 in 58) so that 

methylation on the p-face will lead to (8a), which indeed is the observed major product' (3.5:1 

ratio). Introduction of a methyl substituent at C(5), as in enolate (7) does not significantly 
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alter this argument, since it is quite remote from the reaction site. In fact, the ratio 

(8b):(9b) (ca 1O:l) is rather better in this case, again favoring attack on the convex B-face. - 
The improved stereoselectivity might well result from an enhanced equilibrium population of the 

twisted conformation, since the planar conformation for (7), assuming a preference for 

equatorial benzoyloxy group, now shows a quite pronounced transannular non-bonded interaction 

between the ring (diene) carbons and the 5-methyl group, as can be judged by inspection of the 

structure shown for (5A). 

6 R=MOM 9 

d= Ii ; R-MOM , RI H 

1 R=COPh 
@j R:COPh , R+ 

R’= Me 

In conclusion, there appears to be a definite preference for (a) axial attack during 

borohydride reduction of substituted cycloheptenones, and (b) a twisted conformation for 

cycloheptadienolate which is preferentially alkylated from the convex face. The preference for 

axial attack on the enone carbonyl in this series parallels the reactivity of cyclohexanone 

derivatives, but contrasts with the larger ring sizes (>/ 8-membered) where there is observed a 

preference for peripheral attack.7 
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